Wiring of NTC thermistor temperature sensor

Wiring of NTC Thermistor Temperature Sensor

The connection method of the NTC thermistor temperature sensor needs to be determined according to the actual application scenario and measurement requirements. During the wiring process, be sure to pay attention to the pin polarity, wire selection, temperature range, filtering and decoupling, grounding treatment, and verification and calibration to ensure the accuracy and reliability of the measurement.

Continue reading

Differences Between Pt100 and Pt1000 Sensors

The main difference between a Pt100 and a Pt1000 sensor is their nominal resistance at 0°C, with a Pt100 having a resistance of 100 ohms and a Pt1000 having a resistance of 1000 ohms, meaning the Pt1000 has a significantly higher resistance, making it more suitable for applications where precise temperature measurement is needed with minimal influence from lead wire resistance, especially in 2-wire circuit configurations;

Continue reading

TPE injection temperature sensor RTD PT100 for pipes

What is the Difference Between 2-, 3-, and 4-Wire RTD Sensors?

This article explores 2-, 3-, and 4-wire configurations for resistance temperature detectors (RTDs), focusing on how environmental factors, accuracy requirements, cost, and wire configuration affect selection. The 4-wire configuration is complex but offers the highest accuracy, while the 2-wire configuration has advantages in lower-accuracy applications. Choosing a configuration requires a combination of application requirements and practical conditions.

Continue reading

RTD vs PT100 Resistance Sensor Temperature Measurement Probe

RTD vs PT100: Sensor Resistance in Temperature Measurement Probe

The main difference between an RTD and a Pt100 is the material used for the sensing element: PT100 is a specific type of RTD thermal resistor, and its name comes from “Platinum” (platinum) and “100” (100 ohms at 0°C). It is the most commonly used RTD sensor and is widely used in industrial process control, laboratory measurement and other fields that require high-precision temperature monitoring. The advantages of PT100 include:

Continue reading

Temperature acquisition of 4-wire PT100 temperature sensor

Temperature Acquisition of 2, 3, and 4-Wire PT100 Temperature Sensors

A PT100 sensor acquires temperature by measuring the change in its electrical resistance, which directly correlates to the temperature it is exposed to; as the temperature increases, the resistance of the platinum element within the sensor also increases, allowing for a precise calculation of the temperature based on this resistance change; essentially, the “100” in PT100 signifies that the sensor has a resistance of 100 ohms at 0°C, and this value changes predictably with temperature fluctuations.

Continue reading